
PPoPP'07 Panel

Potential Show-Stoppers for
Transactional Synchronization

Christos Kozyrakis

Computer Systems Lab
Stanford University

http://csl.stanford.edu/~christos

PPoPP'07 Panel

Ok, the base TM ideas look good;

what’s next?

Christos Kozyrakis

Computer Systems Lab
Stanford University

http://csl.stanford.edu/~christos

1. Apps & User Studies
 Are we really simplifying parallel programming?

 Let’s write new apps or get feedback from others

 What are the common cases and pattern?
 This is what we’ll make simpler, faster, …
 Are we sure TM is sufficient to address all of them?

 Casting lock-based apps in TM is dangerous
 Will fine-grain, rare transactions be common?

2. atomic{} is a primitive, not a
parallel programming model

 DB users program SQL, not atomic{}

 Need truly high-level programming models
 Simple & declarative like SQL, Mapreduce, …
 atomic{} will be critical in implementing them
 But it will probably take more than atomic{}

 Primitives for finding concurrency and handling locality,
coordination, scheduling, balance…

 Prog. environment = language + tools + libs
 Use TM to build better debugging/tuning tools
 See talk in next session for the libs issue

3. Atomicity ≠ Coordination
 TM is not a hammer for every nail

 Lots of work on forcing coordination into TM
 Open-nesting, escape actions, non-isolated transactions,

dependent transactions, …
 Use semantics get really ugly, really quickly
 Is it worth it? What do we expose to user and how?

 Simpler idea: use TM for what it is
 Transactions = atomicity + isolation
 Combine with other primitives to address other problems

4. Transactional memory & I/O
 TM is not a hammer for every nail

 We can have restricted I/O within TM but…

 Better idea: make TM work with other
transaction resources in the system
 DB, LFS, message queues, …
 System-level manager coordinates user transaction

across all resources
 Easier-to-use, flexible model with some restrictions

 Can this ever work?
 Look at IBM’s Quicksilver project

5. Beyond concurrency control

 Atomicity & isolation are generally useful
 For debugging, profiling, checkpointing,

exception handling, garbage collection,
security, speculation …

 These may be TM’s initial “killer apps”

 But they also change the requirements
 Cheap transactions for pervasive use
 “All transactions, all the time”

Miscellaneous TM Issues
 Language support: YES
 Compiler support: YES
 HW support: YES
 Strong atomicity: YES
 Contention management: YES
 Compensating actions: YES
 High-level concurrency control: YES
 …

 9am panels: NO

